Alibaba at IJCNLP-2017 Task 2: A Boosted Deep System for Dimensional Sentiment Analysis of Chinese Phrases
نویسندگان
چکیده
This paper introduces Team Alibabas systems participating IJCNLP 2017 shared task No. 2 Dimensional Sentiment Analysis for Chinese Phrases (DSAP). The systems mainly utilize a multi-layer neural networks, with multiple features input such as word embedding, part-of-speechtagging (POST), word clustering, prefix type, character embedding, cross sentiment input, and AdaBoost method for model training. For word level task our best run achieved MAE 0.545 (ranked 2nd), PCC 0.892 (ranked 2nd) in valence prediction and MAE 0.857 (ranked 1st), PCC 0.678 (ranked 2nd) in arousal prediction. For average performance of word and phrase task we achieved MAE 0.5355 (ranked 3rd), PCC 0.8965 (ranked 3rd) in valence prediction and MAE 0.661 (ranked 3rd), PCC 0.766 (ranked 2nd) in arousal prediction. In the final our submitted system achieved 2nd in mean rank.
منابع مشابه
THU_NGN at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases with Deep LSTM
Predicting valence-arousal ratings for words and phrases is very useful for constructing affective resources for dimensional sentiment analysis. Since the existing valence-arousal resources of Chinese are mainly in word-level and there is a lack of phrase-level ones, the Dimensional Sentiment Analysis for Chinese Phrases (DSAP) task aims to predict the valencearousal ratings for Chinese affecti...
متن کاملIJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases
This paper presents the IJCNLP 2017 shared task on Dimensional Sentiment Analysis for Chinese Phrases (DSAP) which seeks to identify a real-value sentiment score of Chinese single words and multi-word phrases in the both valence and arousal dimensions. Valence represents the degree of pleasant and unpleasant (or positive and negative) feelings, and arousal represents the degree of excitement an...
متن کاملCIAL at IJCNLP-2017 Task 2: An Ensemble Valence-Arousal Analysis System for Chinese Words and Phrases
Sentiment lexicon is very helpful in dimensional sentiment applications. Because of countless Chinese words, developing a method to predict unseen Chinese words is required. The proposed method can handle both words and phrases by using an ADVWeight List for word prediction, which in turn improves our performance at phrase level. The evaluation results demonstrate that our system is effective i...
متن کاملMainiwayAI at IJCNLP-2017 Task 2: Ensembles of Deep Architectures for Valence-Arousal Prediction
This paper introduces Mainiway AI Labs submitted system for the IJCNLP 2017 shared task on Dimensional Sentiment Analysis of Chinese Phrases (DSAP), and related experiments. Our approach consists of deep neural networks with various architectures, and our best system is a voted ensemble of networks. We achieve a Mean Absolute Error of 0.64 in valence prediction and 0.68 in arousal prediction on...
متن کاملLDCCNLP at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases Using Machine Learning
Sentiment analysis on Chinese text has intensively studied. The basic task for related research is to construct an affective lexicon and thereby predict emotional scores of different levels. However, finite lexicon resources make it difficult to effectively and automatically distinguish between various types of sentiment information in Chinese texts. This IJCNLP2017Task2 competition seeks to au...
متن کامل